
Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini VenkatasubramanianOperating System Concepts – 9th Ed

Chapter 11:
File-System Interface

2

Chapter 11: File-System Interface

 File Concept
 Access Methods
 Disk and Directory Structure
 File-System Mounting
 File Sharing
 Protection

3

Objectives

 To explain the function of file systems
 To describe the interfaces to file systems
 To discuss file-system design tradeoffs, including

 access methods,
 file sharing,
 directory structures

 To explore file-system protection

4

File Concept
 Computers can store information on various storage media, such as:

 SSDs
 magnetic disks,
 magnetic tapes, and
 optical disks.

 These storage devices are usually nonvolatile
 so the contents are persistent between system reboots

 OS provides a uniform logical view of stored information
 OS abstracts from the physical properties of its storage devices to define a

logical storage unit, the file.
 Files are mapped by the OS onto physical devices
 A file is a named collection of related information that is recorded on

secondary storage.
 From a user’s perspective, a file is the smallest allotment of logical secondary

storage;
 that is, data cannot be written to secondary storage unless they are within

a file.

5

File Concept
 File types: Commonly, files represent

 Programs
 Both source and object forms

 Data
 Numeric, character, binary

 Contents defined by file’s creator
 Many types: text file, source file, executable file, etc

6

File Attributes

 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, security,

and usage monitoring
 Information about files are kept in the directory structure, which is

maintained on the disk

7

File info Window on Mac OS X

8

File Operations
 File is an abstract data type.

 To define a file properly, we need to consider the operations that can be
performed on files.

 Create
 Write – at write pointer location
 Read – at read pointer location
 Reposition within file - seek
 Delete
 Truncate

9

File Operations: Opening a File
 Most of the file operations mentioned involve searching the directory for the

entry associated with the named file.
 To avoid this constant searching, many systems require that an open()

system call be made before a file is first used.

 Open(Fi)
 search the directory structure on disk for entry Fi, and
 move the content of entry to memory

 Close (Fi)
 move the content of entry Fi in memory to directory structure on disk

10

Open Files
 Several pieces of data are needed to manage open files:
 Open-file table:

 Tracks open files
 When a file operation is requested, the file is specified via an index into

this table,
 so no searching is required

 File pointer: pointer to last read/write location,
 per process that has the file open

 File-open count: counter of number of times a file is open
 to allow removal of data from open-file table when last processes closes it

 Disk location of the file: cache of data access information
 The information (needed to locate the file on disk) is kept in memory so

that the system does not have to read it from disk for each operation.
 Access rights: per-process access mode information

14

File Types – Name, Extension

 One can specify an extension to indicated the file type
 but an extension is not required in general

 An extension may serve as a hint to the OS on what to do with the file
 e.g., on double clicking it

15

File Structure
 File types also can be used to indicate the internal structure of the file.
 Source and object files have structures that match the expectations of the

programs that read them.
 Further, certain files must conform to a required structure that is understood

by the operating system.
 E.g., OS requires that an executable file have a specific structure

 so that it can determine where in memory to load the file and
 what the location of the first instruction is.

16

File Structure
 In general, file structure can be:

 None
 Sequence of words, bytes

 Simple record structure
 Lines
 Fixed length
 Variable length

 Complex Structures
 Formatted document
 Relocatable load file

 Can simulate last two with first method by inserting appropriate control
characters

 Who decides:
 Operating system
 Program

17

Sequential-access File

18

Access Methods
 Sequential Access

 Simplest access method
 Based on a tape model of a file

 works on both sequential-access devices and random-access ones.
 Information in the file is processed in order,

 one record after the other.
 Most common method

 E.g., editors and compilers usually access files in this fashion.
 read next

 reads the next portion of the file and
 automatically advances a file pointer, which tracks the I/O location

 write next

 appends to the end of the file and advances to the end of the newly
written material (the new end of file)

 Reset

 a file can be reset to the beginning, and
 on some systems, skip forward/backward n records

19

Access Methods
 Direct Access (= relative access).

 A file is made up of fixed-length logical records
 That allow programs to read and write records rapidly in no particular order
 Based on a disk model of a file,

 Since disks allow random access to any file block
 The file is viewed as a numbered sequence of blocks or records.

We may read block 14, then read block 53, and then write block 7.
 No restrictions on the order of reading or writing for a direct-access file

 n = relative block number (relative -- to the beginning of the file)
 File starts with block 0, then block 1, 2, …
 Relative block numbers allow OS to decide where file should be placed

 Read(n) – read block number n
 Write(n) – read block number n
 position to n

 read next

 write next

23

Directory Structure
 Number of files on a system can be extensive

 Break file systems into partitions
– treated as a separate storage device

 Hold information about files within partitions.
 Device Directory

 A collection of nodes containing information about all files on a partition.
 Both the directory structure and files reside on disk

24

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

26

A Typical File-system Organization

28

Information in a Device Directory
 File Name
 File Type
 Address or Location
 Current Length
 Maximum Length
 Date
 created,
 last accessed (for archival),
 last updated (for dump)

 Owner ID,
 Protection information

29

Operations Performed on Directory

 Search for a file
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

30

Goals of Logical Directory Organization

 Which factors to consider in deciding the logical directory organization?
 Efficiency – locating a file quickly
 Naming – convenient to users

 Two users can have same name for different files
 The same file can have several different names

 Grouping
 Logical grouping of files by properties, (e.g., all Java programs, all

games, …)

 … Let us now consider the most common schemes for defining the logical
structure of a directory

31

Single-Level Directory
 Let us start with the simplest one: A single-level directory for all users

 All files are contained in the same directory
 Pros: Easy to support and understand
 Cons: Naming problem and Grouping problem

 As the number of files increases, difficult to remember unique names
 As the number of users increase, users must use unique names for files

32

Two-Level Directory
 Introduced to remove naming problem among users
 A separate directory for each user

 1st level -- contains list of user directories
 2nd level -- contains user files
 System files kept in separate directory or Level 1.
 Need to specify Path name
 Pros:

 Can have the same file name for different user
 Efficient searching

 Cons: No grouping capability

33

Tree Structured Directories
 Arbitrary depth of directories

 leaf nodes are files
 interior nodes are

directories.
 Efficient Searching
 Grouping Capability
 Current Directory

 =working directory
 cd /spell/mail/prog, cd ..
 dir, ls

 MS-DOS uses a tree
structured directory

34

Tree-Structured Directories (Cont)

 Absolute or relative path name
 Absolute from root
 Relative paths from current working directory pointer.

 Creating a new file is done in current directory
 Delete a file

rm <file-name>

 Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail
mkdir count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

35

Acyclic-Graph Directories

 Have shared subdirectories and files

36

Acyclic Graph Directories
 Generalization of the tree-structured directory scheme
 Acyclic graphs allow sharing

 A shared directory (or file) exists in the file system in two (or more)
places at once.

 Convenient for several reasons, e.g.:
 2 programmers working on the same project might want to share a

subdirectory
 both want the subdirectory to be in their own directories

37

Acyclic Graph Directories
 Sharing can be implemented differently

 Implementation via soft links (=symbolic links)
 Links are pointers to other files or subdirectories

May be implemented as an absolute or a relative path name
We resolve the link by using that path name to locate the real file
 A link can point to a file/subfolder on a totally different volume

 Implementation via hard links
 Duplicate all information about shared files in the corresponding

directory entries
 Original and copy are indistinguishable
 Need to maintain consistency if one of them is modified.
 A link cannot point to a different volume

38

Comparison of Hard Link and Symbolic Link

From IBM.com

39

Acyclic Graph Directories
 Naming

 A single file may have multiple absolute path names
 Two different names for the same file

 Traversal
 Ensure that shared data structures are traversed only once.

 For efficiency
 Deletion

 Removing file when someone deletes it may leave dangling pointers.
 Preserve file until all references to it are deleted

 Keep a list of all references to a file or
 Keep a count of the number of references

– Called reference count
– When count = 0, file can be deleted

40

General Graph Directory
 A problem with an acyclic-graph is ensuring that there are no cycles.
 When we add links

 the tree structure is destroyed
 resulting in a simple graph structure (general graph directory)

41

General Graph Directory
 The primary advantages of an acyclic graph is the simplicity of the algorithms

1. For traversing the graph and (no infinite loops)
2. For determining when there are no more references to a file.

 How do we guarantee no cycles?
 Allow only links to file; not subdirectories

 Limiting
 Every time a new link is added, use a cycle detection algorithm to

determine whether it is OK
 Computationally expensive
 High cost for disks specifically

42

General Graph Directory
 How do we deal with file deletion in general graph directory?

 A garbage collection scheme is needed, as even when file is not used
its reference count can be above zero due to self-referencing or cycles

 Garbage collection involves:
 Pass 1: Traversing the entire file system, marking everything that can be

accessed.
 Pass 2: Collecting everything that is not marked onto a list of free space.

 A similar marking procedure can be used to ensure that a traversal or search
will cover everything in the file system once and only once.

 Garbage collection for a disk-based file system, however, is
 extremely time consuming, and
 is thus seldom attempted.

 How do we ensure an effective traversal in a general graph directory then?
 One solution is to ignore links in such a traversal
 Cycles are avoided, and no extra overhead is incurred.

43

File System Mounting
 File System must be mounted before it can be available to process on the system
 The OS is given

 the name of the device and
 the mount point -- location within file structure at which files attach

 OS verifies that the device contains a valid file system.
 OS notes in its directory structure that a file system is mounted at the specified

mount point.

44

File System Mounting

 A unmounted file system (i.e., Fig. (b)) is mounted at a mount point

49

Protection

 File owner/creator should be able to control:
 what can be done
 by whom

 Types of access
 Read
 Write
 Execute
 Append
 Delete
 List

50

Access lists and groups
 Associate each file/directory with an access list

 Problem - length of access list…
 Solution - condensed version of list

 Mode of access: read, write, execute
 Three classes of users:

1. owner access - user who created the file
2. groups access - set of users who are sharing the file and need

similar access
3. public access - all other users

 In UNIX
 3 fields (of length 3 bits) are used.
 Fields are: user, group, others(u,g,o),
 Bits are: read, write, execute (r,w,x).
 E.g. chmod 761 game

51

Access Lists and Groups (contd.)

 Ask manager to create a group (unique name), say G,
 and add some users to the group.
 chgrp G game

 For a particular file (say game) or subdirectory, define an
appropriate access.

 Mode of access: read, write, execute
 Three classes of users on Unix / Linux

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

52

Windows 7 Access-Control List Management

Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini VenkatasubramanianOperating System Concepts – 9th Ed

End of Chapter 11

	Chapter 11: �File-System Interface
	Chapter 11: File-System Interface
	Objectives
	File Concept
	File Concept
	File Attributes
	File info Window on Mac OS X
	File Operations
	File Operations: Opening a File
	Open Files
	File Types – Name, Extension
	File Structure
	File Structure
	Sequential-access File
	Access Methods
	Access Methods
	Directory Structure
	Directory Structure
	A Typical File-system Organization
	Information in a Device Directory
	Operations Performed on Directory
	 Goals of Logical Directory Organization
	Single-Level Directory
	Two-Level Directory
	Tree Structured Directories
	Tree-Structured Directories (Cont)
	Acyclic-Graph Directories
	Acyclic Graph Directories
	Acyclic Graph Directories
	Comparison of Hard Link and Symbolic Link
	Acyclic Graph Directories
	General Graph Directory
	General Graph Directory
	General Graph Directory
	File System Mounting
	File System Mounting
	Protection
	Access lists and groups
	Access Lists and Groups (contd.)
	Windows 7 Access-Control List Management
	End of Chapter 11

